
1

Large Scale Metagenomic Sequence Clustering
via Sketching and Maximal Quasi-clique
Enumeration on Map-Reduce Clusters
Xiao Yang†, Jaroslaw Zola†, Senior Member, IEEE , and Srinivas Aluru, Fellow, IEEE

Abstract—Taxonomic clustering of species from millions of DNA fragments sequenced from their genomes is an important and
frequently arising problem in metagenomics. High-throughput next generation sequencing is enabling the creation of large metagenomic
samples, while at the same time making the clustering problem harder due to the short sequence length supported and sampling of
hitherto unknown species. In this paper, we present a parallel algorithm for taxonomic clustering of large metagenomic samples with
support for overlapping clusters. We develop sketching techniques akin to those created for web document clustering to deduce
significant similarities between pairs of sequences without resorting to expensive all vs. all comparison. We formulate the metagenomic
classification problem as that of maximal quasi-clique enumeration in the resulting similarity graph, at multiple levels of the hierarchy as
prescribed by different similarity thresholds. We cast execution of the underlying algorithmic steps as applications of the map-reduce
framework to achieve a cloud ready implementation. Apart from solving an important problem in metagenomics, this work presents a
map-reduce algorithm for finding quasi-cliques in graphs, and demonstrates the applicability of map-reduce in relatively complicated
algorithmic settings.

Index Terms—Map-reduce algorithms, parallel applications, computational biology.

F

1 INTRODUCTION

M ETAGENOMICS is the study of a population of
organisms by fragmenting and sequencing their

collective DNA [43]. It is typically applied to commu-
nities of microbial organisms sampled from their native
environments where species-wise separation is difficult,
expensive, or downright impossible. Such studies are
essential for identifying and discovering novel genes,
studying ecosystems, and inferring the impact of micro-
bial composition on host species. As with other areas
of genomics, high-throughput next generation DNA se-
quencing [1], [30] is replacing Sanger sequencing due
to its enormous advantages in cost, throughput, and
scale of data generation. In the case of metagenomics,
this comes with one distinct handicap – most bacterial
genes are small enough to be fully contained in a Sanger
read (up to a 1000 bp of DNA), making the task of
gene identification easier. This advantage is lost due
to the short read lengths supported by next-generation
sequencing.

† X. Yang and J. Zola should be regarded as joint first authors.

• Xiao Yang is with the Broad Institute of Harvard and MIT, Cambridge,
MA 02142.

• Jaroslaw Zola is with the Rutgers Discovery Inormatics Institute, Rutgers
University, Piscataway, NJ 08854.

• Srinivas Aluru is with the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames, IA 50011, and with the Department
of Computer Science and Engineering, Indian Institute of Technology
Bombay, India.

• E-mail: xiaoyang@broadinstitute.org, jaroslaw.zola@rutgers.edu,
aluru@iastate.edu

Among the next-generation sequencing techniques,
the 454 technology [48] is particularly suitable for
metagenomic analysis [2], [31], [39], [40]. With average
length about 400 bp, 454 reads are about a third to
half the length of Sanger reads, but still long enough
for reliable gene identification. An important concern in
surveying metagenomic samples is the clouding out of
low abundance species by highly abundant species. The
significantly higher throughput of 454 technology (10-20
million reads per run) facilitates deep coverage sequenc-
ing, and helps uncover numerous new species with
low abundance in an environmental sample, hence, out-
performing Sanger sequencing in gene discovery. Most
other next-generation sequencing techniques have even
higher throughputs (for example Illumina HiSeq 2000
can produce 2 billion reads [52]), but produce much
shorter reads (25-150 bp), making sequence homology
inference less reliable [24].

One of the important challenges in metagenomics is
understanding species diversity. It is known that there
is a strong mutual interplay between microbial com-
munities and their environments [2], [43]. At the same
time only a fraction of genes discovered in metagenomic
samples can be mapped to known species. Consequently,
quantification of species abundance as per hierarchical
taxonomic units, where each taxonomic unit is a group
of organisms that belong to the same defined biological
type such as genus, family or order, is of paramount
importance. The abundance of a taxonomic unit in the
metagenomic sample is estimated by computing the
ratio of the number of DNA reads belonging to the

2

organisms of this unit over the total number of se-
quenced reads. Usually the reads are derived from the
16S ribosomal DNA (rDNA) pool of the sample. These
serve as a good proxy for profiling abundance since they
are conserved among organisms within a species while
diverging across species.

Two approaches have been pursued in addressing this
problem: The first relies on a database of known 16S
rDNA sequences, for instance the Ribosomal Database
Project [55]. The quantification process is carried out by
aligning every sequenced DNA read to the database, and
assigning it to the taxonomic unit based on taxonomic
classification derived from the corresponding sequences
in the database [10], [11], [13], [18], [24], [27], [29], [42].
This method is obviously limited to currently known
organisms, which are far from comprehensive [4], [29].
In fact, advances in sequencing technology are expected
to be used to further this knowledge and uncover many
hitherto unknown species. Hence, the second approach
advocated is to perform direct clustering or binning
of the reads based on pairwise homologies [23]. It is
expected that carefully calibrated alignment thresholds
will cluster sequences at different levels of the hierarchy
of taxonomic classification.

Current methods for metagenomic clustering are de-
ficient in both the scale of data they can handle and
the quality of clustering. This is particularly an issue
for terascale metagenomics projects [50] – 400 Mbp to
600 Mbp data could be collected via the recent 454 Roche
GS Titanium system within 10 hours [48]. Among the
existing methods, Cd-hit [22] can handle relatively large
data sets. However, it is intended to cluster sequences
that are highly similar. Other methods, such as sketch-
ing techniques [7] and parallel clustering or alignment
algorithms [19], [20], [47], were proposed to scale to large
data sets. But none are applicable to metagenomic data
clustering. The former can only cluster highly similar
sequences, and the single linkage clustering technique
used in [19], [20] would cause different taxonomic units
to be non-differentiable. In addition, in metagenomic
data analysis, the clustering problem itself has not been
defined precisely so far.

In this paper, we propose the first formal model for
the metagenomic clustering problem and present parallel
algorithms for computing it. We make two key con-
tributions: the first is the development of a sketching
technique for DNA sequences to compute significant
pairwise homologies without resorting to O(n2) time all
vs. all alignments, where n is the number of input se-
quences. The second contribution is a parallel algorithm
for enumerating quasi-cliques in a graph. While both
techniques are developed in the context of the matage-
nomics application, we expect them to be more broadly
applicable. We achieve taxonomic clustering at multiple
levels through setting acceptable threshold values on
the homologies. Similarly, our quasi-clique enumeration
algorithm can be run iteratively to update cliques in
response to addition of edges in the underlying graphs.

We cast both the presented algorithms in the map-reduce
framework [9] and develop a cloud-enabled software for
metagenomic clustering named CLOSET (CLoud Open
SequencE clusTering). The map-reduce paradigm has
been drawing the attention of the computational biology
community [28], [36], [41], particularly in the last few
years. However, majority of current applications are
limited to simply distributing the data which is then
handled by existing sequential software. In this work
we demonstrate that even relatively complex algorithms
can utilize map-reduce framework. Although we illus-
trate our clustering framework with an application to
16S rDNAs, it is a general purpose framework that is
suitable for the upcoming ultra-long read technologies,
for instance, single molecule real time sequencing [15].

The rest of this paper is organized as follows. In Sec-
tion 2 we provide a brief introduction and formalize the
clustering problem. Section 3 contains an outline of our
proposed approach, followed in Section 4 by the parallel
algorithms we developed for this problem. Section 5
contains details of how the algorithms are translated into
a map-reduce implementation. Experimental results are
presented in Section 6, and Section 7 concludes the paper.

2 PROBLEM FORMULATION AND COMPUTA-
TIONAL MODELING

Scientists categorize living organisms in the form of
a taxonomic hierarchy. From a computer science per-
spective, this is a hierarchical tree where each level
corresponds to a taxonomic rank, e.g. phylum, class,
order, family or genus. At each rank (level), a node is
a group of organisms that belong to the same biological
type, termed a taxonomic unit (TU). Taxonomic units at
higher levels in the tree contain one or more taxonomic
units at the next lower level, giving a tree structure to
the classification with the leaf nodes corresponding to
individual species. To quantify a TU in an environmental
sample amounts to calculating the ratio of the number of
individuals belonging to this TU over the total number
of organisms in the same sample. The problem is easy
if each individual in a metagenomic sample can be
identified properly. However, this information is only
indirectly available through reads taken from individual
genomes of different organisms in the sample. In our
case, the input is a set of reads from 16S rDNAs, which
we take as providing strong but imperfect signatures for
identifying the underlying organisms.

Given a set of 454 reads with average length around
400 bp, which are partial sequences derived from the full
length 16S rDNAs (∼1600 bp) of microbial organisms
in an environmental sample, the goal is to quantify the
composition of taxonomic units at different taxonomic
ranks. The number of reads belonging to the same
taxonomic unit defines its prevalence in the sample. With
majority of these reads coming from undocumented
organisms, one cannot associate reads with organisms
directly. Rather, we indirectly infer through alignment

3

if reads are coming from the same organism or from
multiple organisms within the same taxonomic unit. This
task is achieved via clustering. In general, reads are more
similar at a lower taxonomic rank (e.g., genus) than at a
higher taxonomic rank (e.g., family).

To tackle the above problem, we assume the avail-
ability of a pairwise similarity function such that two
reads of the same taxonomic unit can be differentiated
from those belonging to different taxonomic units at
the same taxonomic rank. The function is not expected
to be (indeed it cannot be) perfect but provide trust-
worthy differentiation in a good majority of the cases.
Examples of such functions include sequence alignment,
secondary structure alignment, or their approximations.
After the similarity relationships have been established,
reads can be grouped together using different clustering
algorithms [46].

Computationally, we need to address the following
two tasks. Given a set of reads R = {r1, r2, . . . , rn} as
input:

1) Identify all pairs (ri, rj) such that F (ri, rj) ≥ t,
where F is the chosen similarity function and t is
a threshold.

2) Cluster reads based on their established similarity
association.

Current methods for metagenomic read clustering do
not document a precisely defined goal for clustering
but rather leave it to be inferred through the algorith-
mic approach. As observed in [16], diverse needs of
clustering in relation to the application domains is the
main reason behind the plethora of clustering algorithms
developed in the literature. In case of metagenomics,
single linkage clustering or hierarchical clustering tech-
niques are widely used (e.g., [12], [23]). The major flaw
of these strategies lies in their inability to properly
deal with inaccuracies and ambiguities in the similarity
measure, prevalent in metagenomic data analysis. Two
major problems arise due to the way current methods
deal with ambiguities: when a read is highly similar to
reads from multiple taxonomic units, it is included in
one of them leading to a wrong count, or even worse,
the taxonomic units are merged into a single one (in
case of single linkage clustering). Once a mistake is
committed, it percolates upwards in the hierarchy of
taxonomic ranks. In other words, current methods look
for partitioning of the read set – meaningful only if read
clustering can be made accurately. Note that the correct
similarity score threshold that differentiates a taxonomic
unit successfully from all others at the same rank is
unknown.

To address these issues, we model the clustering prob-
lem as follows: we regard true clustering at a certain
taxonomic rank to be a partitioning of the input reads
– the ideal we seek. However, since the function F is
unlikely to faithfully reflect evolution such that reads of
the same taxonomic unit can be unambiguously differ-
entiated from reads of other units, we allow a read to
concurrently occur in multiple clusters when applicable.

The ambiguities in read assignments are likely to be alle-
viated as we lower the similarity threshold. For instance,
let F (ri, rj) = 90%, F (ri, rk) = 90%, F (rj , rk) = 84%,
and F (rp, rq) = 86%. If we choose t = 85% as a cutoff
corresponding to the genus rank and look for com-
plete linkage clustering, three clusters can be formed:
{ri, rj}, {ri, rk} and {rp, rq}, where ri is equally justified
to be placed in two clusters. While at the family rank
where t is lowered to e.g. 80%, a partition is achieved:
{ri, rj , rk} and {rp, rq}. Ultimately, when the similarity
threshold reduces to below a certain value, the input
becomes a single cluster – a faithful reflection that all
reads belong to the same domain. Due to false positives
resulting from choosing the similarity function F , it is
too stringent a requirement to expect complete linkage
between every pair of reads in the same taxonomic unit.
Furthermore, when the read similarity function is used,
two reads from the same individual rDNA will not score
highly on the similarity score if they sample different
parts of the rDNA. To account for these, we propose to
only enforce a certain degree of partial linkages within
a cluster that grows as a function of the cluster size.

We define a cluster to be consisting of a set
of reads such that there exists a sufficient num-
ber of pairwise similarities among them. Formally,
a cluster is a maximal set Q ⊆ R of reads
such that

∣∣{(r, s) ∈ Q×Q : r 6= s, F (r, s) ≥ t}
∣∣ ≥ γ · (|Q|2).

Note that this definition takes into account inaccuracies
in determining taxonomic unit membership based on
read similarities. The parameter γ can be dialed up or
down to reflect the trust in this assessment, or can be
a function of the threshold t or the cluster size. The
clustering problem is then defined as that of finding all
maximal clusters Q at a given threshold level t. Note
that the clusters need not be a partition. In addition, the
clusters could be computed for a decreasing sequence
of threshold values. Domain experts can then view the
resulting clusters and identify the thresholds at which
the clusters appear to be classifying taxonomic units at
a particular rank level. For instance, one could iden-
tify thresholds at which the resulting clustering best
approximates a partition. This leads to more accurate
classification because the data supports the inference that
clustering can be done meaningfully at these threshold
levels.

3 PROPOSED ALGORITHMIC APPROACH

We now present our algorithmic approaches for comput-
ing pairwise read similarities and subsequent clustering.
The typical practice in solving the first task is to compute
all pairwise scores, which has O(Cn2) complexity, where
C is the time taken by the function F (ri, rj). This is a
well studied problem with sequential and parallel so-
lutions [35], which nevertheless remain computationally
expensive for large n. Different clustering algorithms try
to circumvent this problem using different strategies.
For example, Cd-hit [22] greedily searches for clusters

4

among sequences, however, its worst-case time complex-
ity remains O(n2). Note that an overwhelming majority
of F function evaluations result in unconnected pairs
of reads, even at higher taxonomic ranks (the highest
taxonomic rank where all reads would be in one cluster
is not considered). In this paper, we avoid all pairwise
similarity computations and propose a sketching based
algorithm to directly infer pairs whose estimated similar-
ity scores exceed a given threshold. Our technique relies
on adapting sketching techniques particularly those used
for web documents clustering [5], [26], where all vs. all
comparisons are clearly impractical.

Our algorithm takes a decreasing sequence of sim-
ilarity cutoffs T = (t1, t2, . . . , tm) as input. For each
cutoff tk, we perform clustering based on pairs of reads
(ri, rj) such that F (ri, rj) > tk. We formalize the above
strategy using graph theory. Let Gk = (V,Ek) be a set of
undirected graphs (1 ≤ k ≤ m) on the same set of nodes,
where vertex vi ∈ V denotes read ri ∈ R for 1 ≤ i ≤ n.
Let W : V × V → [0, 1] denote a weight function over
potential edges where wij = F (ri, rj). Edge set Ek is
defined as: eij = (vi, vj) ∈ Ek if and only if wij > tk.
Note that Ek−1 ⊆ Ek (1 < k ≤ m). The weights of edges
are immaterial in quasi-clique enumeration. However,
they are needed to determine the presence or absence of
edges in each graph Gk. Since tm is the lowest threshold,
it is sufficient to store W only for (i, j) pairs where
F (ri, rj) ≥ tm, or in case tm is not known a priori,
then for (i, j) pairs where F (ri, rj) ≥ t for a sufficiently
conservative lower bound t ≤ tm. The edge set Ek for
each graph can then be computed from the stored values
of the W function. Viewed another way, W is computed
over edges in Em, or a superset of edges of Em (denoted
by E from hereonwards) since tm may not be known in
advance.

We compute clustering on graphs G1, G2, . . . , Gm, in
that order. We add edges incrementally in going from
one graph to the next. In what follows, the superscript
is dropped for convenience and each graph is simply
referred to as G with the threshold becoming clear from
the context. A cluster is a maximal quasi-clique in G:
let U ⊆ V ; the U -induced subgraph G′ = (U,EU) is a
γ-quasi-clique if |EU | ≥ γ ·

(|U |
2

)
, for 0 < γ ≤ 1.

4 ALGORITHMS FOR METAGENOMIC CLUS-
TERING

In this section, we present our algorithms for 1) edge
construction and validation, and 2) clustering via in-
cremental maximal quasi-clique enumeration. The map-
reduce realization of these algorithms will be described
in detail in the next section. In what follows, we use the
notation 〈key, value〉 to denote a key and value pair.

4.1 Edge Construction and Validation

Our algorithm for edge construction is adapted from
the sketching technique originally proposed for web

based document clustering [5]. We briefly recall here the
relevant key ideas from document clustering. Initially,
each document Di is converted to its corresponding
tuple set Si, where each tuple in Si is a sequence of k
consecutive words in Di. Then, a universal hash function
is utilized to map every tuple in Si uniformly to the
space of integers (usually 64-bit). After hashing, Di has
been converted to a set of integers, denoted by Hi.
The Jaccard similarity coefficient between Di and Dj ,
defined as |Hi∩Hj |

|Hi∪Hj | , has been shown [6] to be equivalent
to the probability that the minimum values of Hi and
Hj are the same. Theoretically, to derive the Jaccard
similarities among a set of highly similar documents, it
is sufficient to use the above strategy to compare the
extracted minimum values from each of them. These
extracts are termed sketches, and using the sketches to
pair documents that share the same sketch avoids all-
pair comparisons. Nonetheless, in practice, the cluster-
ing results are greatly influenced by the chosen hash
function. The accuracy of using this technique degrades
when used to cluster documents that are less similar [17].
At the same time, more sketches can be chosen (e.g., via
a modular function) to better represent each document
under comparison.

For metagenomic read clustering, we are facing the
challenge to cluster not only reads with high similari-
ties (e.g., 95%) but also reads with much lower similari-
ties (e.g., 75%) to be able to classify microbial organisms
at different taxonomic ranks. In addition, reads are in
the DNA alphabet of size just 4, compared to the much
larger alphabet set used in documents, and a large num-
ber of reads may share a common substring. In addition,
DNA sequences are continuous strings with no word
decomposition as in written text. Hence, the concept of
word is replaced by substring of fixed length k, referred
to as a k-mer. Our solution for adapting sketching tech-
niques to metagenomic reads is given in Fig. 1. Even
though presented as a serial algorithm for convenience,
it is designed such that the individual steps can be
easily executed in parallel. Details of parallel execution
using the map-reduce framework are deferred to the next
section.

Each read in R = {r1, r2, . . . , rn} is initially converted
to a set of integers comprising of the hash value of
every constituent k-mer (substring of length k) (line 1).
Instead of choosing the minimum value to represent a
read ri, we select a subset Si of hash values that are l
modulo M , where M is a preset constant (line 3). The
similarity between reads ri and rj is computed as |Si∩Sj |
(derived in lines 4–14) divided by min(|Si|, |Sj |). Our
design of this similarity function is motivated by the
need to capture containment relationships, and account
for differences in read lengths. Note that if read ri is a
substring of read rj , then Si ⊆ Sj , resulting in a perfect
similarity score of 100% as desired.

To avoid the O(n2) complexity in computing the simi-
larity function for each pair, we let common hash values

5

1: For each read ri ∈ R, hash every constituent k-mer to
a 64-bit integer, to obtain a hash set Hi = {h1, h2, . . .}.

2: for l = 0 to M − 1 do
3: Generate the lth sketch for each ri:

Si = {hj |hj ∈ Hi ∧ (hj mod M) = l}.
4: For each Si, and each hj ∈ Si generate 〈hj , rIDi〉,

where rIDi is the unique identifier assigned to ri.
Let SR denote the list of all pairs so generated.

5: Let nj denote the number of elements in SR with
key hj . Let Cmax be a user specified threshold.

6: for every unique key hj of SR do
7: if nj ≤ Cmax then
8: For all pairs of 〈hj , rIDa〉, 〈hj , rIDb〉 ∈ SR, such

that rIDa 6= rIDb, generate 〈(rIDa, rIDb), 1〉.
9: else

10: Retain all rIDs sharing the same key hj as an
entry in the list SRrem.

11: end if
12: end for
13: Merge all entries generated in line 8 with the same

key by summing up the corresponding values.
14: Update every pair 〈(rIDa, rIDb), count〉 ∈ SR by

incrementing count by one each time rIDa, rIDb

concurrently belong to an entry in SRrem.
15: For each 〈(rIDi, rIDj), count〉 ∈ SR, derive similar-

ity score Jij = count
min(|Si|,|Sj |) . If Jij ≥ Cmin, where

Cmin is the user specified similarity value, add the
pair 〈rIDi, rIDj〉 to the candidate list Ll.

16: end for
17: Let L =

⋃M−1
l=0 Ll.

18: For every 〈rIDi, rIDj〉 ∈ L, let wij = F (ri, rj).
If wij ≥ t add 〈(rIDi, rIDj), wij〉 to the final list de-
scribing set E.

Fig. 1: The edge construction and validation algorithm.

dictate which pairs to evaluate. Each common hash value
shared between a pair of reads causes the generation of
that pair with a frequency count of one. The frequency
counts are later aggregated to reflect the number of
common hash values. However, since DNA alphabet is
small, some common k-mers may appear even between
reads that do not share significant similarity. In partic-
ular, short repeats or elements that frequently appear
in multiple DNAs can cause a significant throwback
to the O(n2) complexity by creating many pairs with
low frequency counts that will later be eliminated. To
avoid this, we postpone using high frequency k-mers to
avoid generating exceedingly large number of read pairs
(line 10). This practice is also supported by biological
justification: substrings common to DNAs from many
organisms are not useful in differentiating among them.
However, once we decide to explore similarity of two
reads based on sharing of low frequency substrings,
the high frequency ones have to be added back into
the mixture to determine the corresponding similarity
score (line 14).

The quality of results can be severely affected by

sketching bias – the hash function does not guarantee to
map k-mers uniformly into the integer space as assumed
by the sketching technique [6]. To mitigate this effect, we
apply M rounds of sketching and read pairs (i.e. graph
edges) generation. In round l (0 ≤ l < M), the sketch is
composed of hash values that are l modulo M . An edge
survives as long as it is generated by at least one of these
sketches. In a probabilistic sense, this exponentially de-
creases the chance that a read pair is completely missed.
On the flip side, many edges are expected to be identified
multiple times. The storage issues concerning this can
be mitigated by combining the set of pairs for each
successive sketch on the fly with the pairs seen so far,
rather than combine them all at once as mathematically
indicated in line 17.

Finally, the entire exercise of generating read pairs
based on sketching can be seen as a filter to produce
pairs worthy of further evaluation. Any user defined
similarity function F can then be applied to assess
the generated read pairs directly. However, the sketch-
based function we designed is accurate enough to be
directly used in practice. If so, line 18 of the algorithm
is unnecessary, and t can be used in place of Cmin
in line 15. Thus, we are able to provide a standalone
solution for metagenomics clustering, while at the same
time providing flexibility to the user to specify any arbi-
trary similarity function of their choice and immediately
benefit from a highly efficient parallel implementation.

4.2 Incremental Quasi-clique Enumeration

Exact maximal (quasi-) clique enumeration has been
extensively studied in the literature and there have been
parallel algorithms designed for this problem using both
message passing and shared memory paradigms [14],
[37], [45], as well as the map-reduce framework [44].
Due to the irregular graph structures arising in practice
and the existence of an exponential number of maximal
(quasi-) cliques in such graphs, available methods are
typically applied to random graphs or graphs of rela-
tively smaller sizes than the ones emerging in the cur-
rent application. Therefore, we designed an approximate
maximal quasi-clique enumeration strategy suitable for
large metagenomic graphs.

To cluster reads at different taxonomic ranks, we will
use a series of similarity cutoffs T = (t1, t2, . . . , tm),
sorted in the decreasing order, and the corresponding
graphs G1, G2, . . . , Gm. The results can be obtained by
performing maximal quasi-clique enumeration to iden-
tify clusters on each graph Gk independently. However,
this is wasteful because each succeeding graph Gk con-
stitutes addition of edges to the previous graph Gk−1.
Hence, a maximal quasi-clique in Gk−1 will continue to
be a quasi-clique in Gk, but the addition of edges may
render it non-maximal. Thus, our algorithms starts with
the maximal quasi-cliques generated for Gk−1, treats
each of the newly added edges as a clique of size 2,
and performs clique merging iteratively to form maximal

6

cliques for Gk. Using a series of similarity cutoffs gives
domain experts the flexibility to view different resulting
clusters and identify the thresholds at which the clusters
would be more meaningful in the context of a particular
application.

Our method is presented in Fig. 2. Each clus-
ter c (a maximal γ-quasi-clique) is denoted by a pair:
〈key, value〉, where the key field, denoted by c.key, repre-
sents the set of vertices in c, and the value field, denoted
by c.value, represents the set of edges in this cluster. Ini-
tially, every edge with similarity score higher than given
threshold is considered a clique (lines 6–9). Then, two
clusters that share common vertices are joined together if
a larger γ-quasi-clique can be formed (lines 11–17). Note
that our algorithm offers no theoretical guarantee that
it enumerates all maximal γ-quasi-cliques. In fact, the
number of such cliques can be exponential in the worst
case. Instead, our algorithm is a heuristic to generate
maximal quase-cliques appropriate to the problem at
hand. We do not expect arbitrary input but given that
the reads come from organisms which should fall into
groups at various taxonomic ranks, the clique generation
process is expected to discover these groupings. Note
that the above notation for a cluster is for ease of
presentation. In practice, the vertices need not to be
stored explicitly but can be inferred from the edges, and
identification of clusters with a common set of nodes can
be implemented without testing all ci, cj pairs.

1: Let T = (t1, t2, . . . , tm) for t1 > t2 > . . . > tm,
and t0 = 100%.

2: k ← 1
3: Let C denote the clustering result, C ← ∅.
4: while k ≤ m do
5: for every eij ∈ E do
6: if tk−1 ≥ wij > tk then
7: c.key ← {rIDi, rIDj}; c.value = {(rIDi, rIDj)}
8: C = C ∪ {c}
9: end if

10: end for
11: repeat
12: Identify ci, cj ∈ C such that ci.key ∩ cj .key 6= ∅.
13: n1 ← ci.key ∪ cj .key; n2 ← ci.value ∪ cj .value
14: if |n2| ≥ γ ·

(|n1|
2

)
then

15: C = C \ {ci, cj}; C = C ∪ {〈n1, n2〉}
16: end if
17: until no change in C is observed.
18: k ← k + 1
19: end while

Fig. 2: Algorithm for maximal quasi-clique enumeration.

5 MAP-REDUCE IMPLEMENTATION

We implemented our clustering algorithm using the
map-reduce framework. This choice was motivated by
several practical considerations. Typical metagenomic
data sets consist of gigabytes of data and impose serious

I/O and storage requirements. At the same time avail-
able map-reduce implementations, for instance Apache
Hadoop [51], deliver highly efficient distributed file
systems (e.g., HDFS) that remove complexity of man-
aging I/O explicitly, and hide its low-level details from
programmers. Because map-reduce applications are typ-
ically executed in large cluster environments that have
high probability of a single node failure, map-reduce
implementations provide strong fault-tolerance mecha-
nisms. Finally, map-reduce applications can be easily
deployed in popular cloud environments, for instance
Amazon EC2 [49], making them more accessible to users
who are not high performance computing experts. The
later argument seems to be especially noteworthy, taking
into account increasing interest of biology researchers in
cloud-enabled solutions.

The aforementioned advantages of map-reduce come
at a price of constrained flexibility, since algorithms must
be expressed as a series of map and reduce stages,
through which the input data is streamed. While this
pattern is sufficient for many embarrassingly parallel
applications, it becomes challenging, and sometimes in-
feasible, for more algorithmically difficult problems.

To express our clustering procedure using the map-
reduce paradigm, we designed a series of data trans-
formations, where each transformation is a single map-
reduce task, and output of one task is streamed as an
input to the next one. Below we provide a detailed
description of each task specifying its input as well
as map and reduce functions. For convenience we use
the same notation as in Figs. 1 and 2. Additionally, we
use keywords Map, Reduce and emit following their
standard meaning in the map-reduce framework [9].
Finally, we assume that the input data, i.e. the set of
reads R, is initially stored as pairs 〈rIDi, ri〉, which is
required by map-reduce.

5.1 Edge Construction

Our implementation of the edge construction stage uses
five tasks outlined in Fig. 3. Note that some parts of our
algorithm can be directly cast as map-reduce computa-
tion, while others require more involved data conversion
to enable efficient execution in the map-reduce setup.

We start by generating a list of candidate edges with
similarity at least Cmin. This part of the algorithm
naturally translates to map-reduce and in our imple-
mentation is achieved by repeatedly executing (for M
iterations) Task 1 and Task 2. These tasks correspond to
the main loop in Fig. 1.

The goal of Task 1 is to create a list of reads that share
common k-mers. For a given read ri mapper performs
hashing of its k-mers, and identifies sketches taking into
account iteration counter l and parameter M . Although
in the original algorithm k-mer hashing is performed
outside the main loop, in our implementation we merged
it into the sketch generation phase for sake of simplicity.
Each generated sketch is used as a key associated with

7

Task 1: Sketch Selection
Input: Read 〈rIDi, ri〉, parameters M, l, Cmax.
Map: Generate sketch set Si of read ri for given M
and l. For each sketch sj ∈ Si emit 〈sj , rIDi〉.
Reduce: For each key s get list L = [rIDi, rIDj , . . .] of
reads sharing sketch s. If |L| ≤ Cmax emit 〈|L|, L〉.
Otherwise, store L in a temporary file.

Task 2: Edge Generation
Input: Pair 〈z, L = [rIDi1, rIDi2, . . . , rIDiz]〉,
parameter Cmin.
Map: For each read pair (rIDi, rIDj), rIDi, rIDj ∈ L,
i 6= j, emit 〈(min(rIDi, rIDj),max(rIDi, rIDj)), 1〉.
Reduce: For each key (rIDi, rIDj) get list
L = [q1, q2, . . .] of corresponding values.
Let count =

∑
qx∈L qx.

If rIDi and rIDj are both present in the temporary
file generated in Task 1, increase count by one.
Compute Jij as described in Fig. 1, line 15.
If Jij ≥ Cmin emit 〈rIDi, rIDj〉.

Task 3: Redundant Edges Removal
Input: Predicted edge 〈rIDi, rIDj〉.
Map: emit input entry as is.
Reduce: For each key rIDi get list of its adja-
cent nodes L = [rIDj1, rIDj2, . . .]. For each unique
rIDj ∈ L emit 〈rIDi, rIDj〉 and emit 〈rIDj , rIDi〉.

Task 4: Data Aggregation
Input: Input read 〈rIDi, ri〉 or candidate
edge 〈rIDa, rIDb〉.
Map: emit input entry as is.
Reduce: For each key rIDi assign its correspond-
ing read to r, get list of its adjacent nodes
L = [rIDj1, rIDj2, . . .], then emit 〈rIDi, (r, L)〉.

Task 5: Edge Validation
Input: Edge data 〈rIDi, (ri, L = [rIDj1, rIDj2, . . .])〉,
parameter t.
Map: For each read rIDj ∈ L
emit 〈(min(rIDi, rIDj),max(rIDi, rIDj)), ri〉.
Reduce: For each key (rIDi, rIDj) get ri and rj .
If F (ri, rj) ≥ t emit 〈(rIDi, rIDj), F (ri, rj)〉.

Fig. 3: Map-reduce tasks implementing the edge construction and
validation algorithm.

the read from which it has been derived, so that reducer
can directly aggregate all reads containing given sketch.
The list so obtained is then emitted as output, to be
processed by the next task, or if its size is greater than
Cmax it is stored in a temporary file. Collectively, the
output and temporary files generated by reducers in
Task 1 represent lists SR and SRrem, respectively.

Given a list of reads that share common sketches the
purpose of Task 2 is to directly estimate Jaccard index
between all implied read pairs. To compute the estimate
for a single pair the number of its shared sketches is
required. This problem is similar to the classic task of
counting words using map-reduce [9] and can be solved
in exactly the same way. Therefore, each mapper in
Task 2 enumerates possible “words”, which in our case
are pairs of reads with common sketches, and reduc-
ers perform counting. The resulting counts are further
updated with the data from temporary files generated
in Task 1. Given this information, reducers can compute
Jaccard index for each pair, and emit all pairs with the
similarity score above the threshold Cmin. Note that the
final output of Task 2 represents list Ll of candidate
edges.

As explained earlier when describing the edge con-
struction and validation algorithm, many edges will be
enumerated in more than one of M iterations of Task 1
and Task 2. Therefore in Task 3 we remove redundant
edges. However, to enable efficient implementation of
the validation stage we replace each undirected edge
with two corresponding directed edges. Notice that con-
ceptually this task corresponds to line 17 in Fig. 1, with
the exception that each undirected edge in list L is now
represented twice.

The idea behind such data transformation is to facili-
tate successive edge validation steps. Recall that map-
reduce does not provide explicit support for random
access to secondary storage. Instead the data has to be
streamed through mappers and reducers. In order to per-
form edge validation however we need to access both:
information about edges, that is output of Task 3, and
actual read sequences required to compute function F .
At the same time accessing each read sequence directly
from the hard drive, using for instance the libhdfs
interface [53], would generate significant overhead and
hence adversely affect its performance in practice. There-
fore to overcome this limitation we divided the edge
validation stage into two tasks, wherein Task 4 we bring
together edge and sequence data and in Task 5 we
compute function F .

In Task 4 for every read that has been selected to
form a candidate edge we group its adjacent nodes and
its sequence. We concurrently stream reads from the
original input data and candidate edges generated by
Task 3. Note that both data sets use read identifier as
a key. Consequently mappers can simply forward each
input entry directly to reducers, which then perform data
aggregation. Once all values for a given key are com-
bined, reducer can directly identify the one value that

8

represents read sequence. What is important, because
during merging in the previous step every undirected
edge has been replaced by two complementary directed
edges, the output of Task 4 will include read sequence for
every unique read present in the set of candidate edges.
Moreover, because input sequences are streamed rather
than randomly accessed, we maintain efficiency at the
cost of increased secondary storage use.

Having both edges and sequences in place, the final
task is to compute function F performing validation.
This step is implemented in Task 5. Observe that the
output of Task 4 is in fact an augmented adjacency
list, in which every read is described by its sequence
and a list of adjacent nodes. Such data representation
makes the following conversion easy to perform by a
mapper. For a given read all edges to which it is incident
are generated. Each resulting edge is represented by
an ordered pair of reads, and the same ordering is
implemented by all mappers. The ordered pairs are used
as keys associated with sequences of reads for which
they have been generated. By imposing ordering we
remove directionality information as now each edge is
represented twice by the same key. However, both copies
are associated with different read sequence, one for each
incident read. Hence, together they provide all data
required to evaluate function F for a given edge. The
evaluation is performed by a reducer, which then checks
if computed score is above the desired threshold t, and
emits edge and its score accordingly.

5.2 Quasi-cliques Enumeration

The output of Task 5 represents a weighted undirected
graph in which we want to perform maximal quasi-
clique enumeration. Fig. 4 shows tasks we have designed
to express our enumeration algorithm using map-reduce.
Our implementation consists of three tasks that are
executed for each threshold tk ∈ T . Task 6 performs
edge filtering, while Task 7 and Task 8 are responsible
for iterative quasi-clique generation – equivalent of the
internal loop in Fig. 2, line 11–17.

We start the entire process with Task 6 in which we
convert a list of edges having similarity score higher
than tk to an adjacency list. This procedure is executed
only once for each similarity threshold, and its output is
streamed to Task 7 during the first iteration of the internal
loop. Mappers in Task 7 convert newly introduced edges
into clusters and merge them with clusters identified in
earlier iterations. Note that each cluster is described by a
unique label, which is generated by a hashing function h
based on read identifiers which are contained by the
cluster. In order to detect clusters that share common
nodes, and thus may form a γ-quasi-clique, mappers
in Task 7 create a mapping between reads and clusters
containing them. Next, reducers aggregate all clusters
shared by a given read, and merge pairs that form γ-
quasi-cliques. Each new cluster created in this way is
assigned an identifier and written to the output. Using

Task 6: Edge Filtering
Input: Input edge 〈(rIDi, rIDj), wij〉, parameter tk.
Map: If tk ≤ wij emit 〈rIDi, rIDj〉.
Reduce: For each key rIDi get list of its adjacent
nodes L = [rIDj1, rIDj2, . . .] and emit 〈rIDi, L〉.

Task 7: Quasi-clique Generation
Input: Adjacency list 〈rIDi, L = [rIDj1, rIDj2, . . . ,]〉
or cluster 〈h, c = [(rIDa1, rIDb1), (rIDa2, rIDb2), . . .]〉,
and parameter γ.
Map: For each read rIDj ∈ L emit 〈rIDi, (rIDi, rIDj)〉
and emit 〈rIDj , (rIDi, rIDj)〉. For each read rIDi

adjacent to edge from c emit 〈rIDi, c〉.
Reduce: For each key rIDi get list L = [cj1, cj2, . . .]
of clusters containing rIDi. If cj , ck ∈ L,
j 6= k, can be merged to form a γ-quasi-clique
emit 〈h(cj ∪ ck), cj ∪ ck〉.

Task 8: Merging Clusters
Input: Cluster
〈hi, c = [(rIDa1, rIDb1), (rIDa2, rIDb2), . . .]〉.
Map: emit input entry as is.
Reduce: For each key hi get list L = [cj1, cj2, . . .] of
clusters with the same hash hi. Let C =

⋃
cj∈L cj .

emit 〈h(C),C〉.

Fig. 4: Map-reduce tasks implementing the maximum quasi-clique enu-
meration algorithm.

the above procedure we avoid testing all possible cluster
pairs as we compare only some fraction that shares
common reads.

The final step is to merge quasi-cliques defined over
the same set of reads. Observe that because individual
mappers/reducers are always executed independently, it
is possible that several different γ-quasi-cliques covering
the same set of reads may be enumerated. In Task 8 we
perform merging of such quasi-cliques exploiting the fact
that each quasi-clique has key assigned, which is a hash h
of its nodes. During the merging step reducers take care
of potential collisions, which for brevity is not indicated
in Fig. 4. The output of Task 8 is a list of clusters C.

As we already mentioned, for a given threshold both
Task 7 and Task 8 are repeated until no further changes in
the set of output clusters are possible, which concludes
the enumeration process.

6 EXPERIMENTAL RESULTS

6.1 Test Data

To assess efficiency of our clustering approach and its
map-reduce implementation we performed a set of ex-
periments with synthetic and real-life data.

From the Ribosomal Database Project (RDP) reposi-
tory [55] Release 10 (Update 27), we extracted all high

9

quality annotated sequences from individual isolates.
The resulting set comprised of 7,289 bacterial 16S rDNA
fragments. To each sequence we assigned a taxonomic
lineage from the domain level to the genus level, based
on the original RDP taxonomy. Next, from each se-
quence we extracted a 850 bp long substring starting
200 bp downstream from the position matching the
primer sequence 337F. The goal of this procedure is to
extract variable regions V1 to V3 of 16S rDNA. These
particular regions are generally considered to be the
most informative parts of 16S rDNA, and are suitable
for distinguishing bacterial species to the genus level [8],
[21]. We will refer to this data set as RDPX-I.

We used RDPX-I to further simulate 454 sequencing
and obtain a synthetic metagenomic sample. Classifica-
tion of known species found in environmental samples
indicates that their abundance may follow the power law
distribution with a few high and many low abundance
species [32]. In practice, abundance is manifested by the
number of reads derived from each microorganism. Con-
sequently, to obtain the data set RDPX-II we applied the
following procedure. Using sampling with replacement
of RDPX-I we created a pool of n = 5,000,000 sequences,
with the property that the probability of a sequence
coming from the k-th abundant species is given by
P (k) ∼ kβ , where β = −0.33 based on [32]. This results
with the expected number of sequences derived from the
least and the most abundant species being 460 and 8,688,
respectively (see Fig. 5). Next, we employed the 454sim
tool [25] to simulate sequencing of the selected 5,000,000
16S rDNA fragments on the 454 Roche GS Titanium
platform. Finally, we post-processed obtained reads by
cleaving low-quality ends and removing reads shorter
than 250 bp. The resulting data set comprises 4,485,498
reads with average length 420 bp, and maximum length
622 bp. Note that the above in silico procedure closely
reproduces a typical metagenomic sequencing pipeline,
while it delivers annotated data that can be readily used
to assess quality of metagenomic tools.

102

103

104

 0 2500 5000 7500

N
u
m

b
e
r

o
f

R
e
a
d

s

Species Rank

Fig. 5: Reads abundance with respect to species rank in the data set
RDPX-II.

6.2 Experimental Environment
To implement map-reduce tasks described in the previ-
ous section, and to deploy a map-reduce cluster, we used
the latest Apache Hadoop framework. Hadoop provides
three different interfaces (Java, Pipes and Streaming),
which vary in trade-off between efficiency and flexibility.
Because our algorithm requires high data throughput
(difficult to achieve in Hadoop Streaming), and de-
pends on computationally intensive subroutines (hard
to implement efficiently in Java), we decided to rely on
C++ and Hadoop Pipes combined with the libhdfs
library to provide direct access to Hadoop distributed file
system (required to manage temporary files). Although
Hadoop Pipes do not support native data types we used
Ascii85 encoding to overcome this limitation. To imple-
ment hashing function used in the sketching stage we
investigated several popular choices, including djb2 [3],
Rabin fingerprint [33] and 64bit Murmur2 hash [54], and
found the last to provide the best performance. To or-
chestrate map-reduce tasks we implemented additional
shell scripts that keep track of iteration progress and
manage intermediate data whenever required. Finally,
we created a set of small tools to convert input and out-
put data between the standard biological data formats
and our internal representation. The complete software
package constitutes a cloud-enabled framework, which
we named CLOSET (CLoud Open SequencE clusTering).

We deployed CLOSET on a 31 node Hadoop clus-
ter with a total of 248 GB main memory, and 5.4 TB
secondary storage with average of 60 MB/s buffered
read (as reported by hdparm -t) under the control of
HDFS. The cluster has 31 nodes with dual AMD 2.2 GHz
4-core CPUs for a total of 248 cores, and uses Gigabit
Ethernet for interconnect. We used a typical Hadoop
configuration with one node serving as a master tracking
jobs and maintaining the HDFS metadata, and remaining
nodes acting as workers executing computations and
storing data blocks. We set HDFS replication factor to 2,
and used 64 MB data block size.

6.3 Sketching Performance
In the first set of experiments we focused on the analysis
of our sketching approach, addressing two main ques-
tions: first, how sensitive is this technique, and second,
how well does it scale? Here we should note that because
the method never produces false edges, i.e. edges with
similarity score lower than given threshold t, sensitivity
is a sufficient criterion to characterize sketching accuracy.
At the same time, to be scalable sketching must be able
to deliver high sensitivity while performing only a small
fraction of all vs. all sequence comparisons.

In our implementation of the edge construction algo-
rithm, we use Jaccard index of k-mer spectra to obtain
similarity scores between pairs of sequences. There-
fore, to measure sensitivity we first computed similarity
scores between all pairs of sequences in the RDPX-I
data set, which is feasible taking into account its size,

10

and then used the resulting graph as a reference to
compare graphs generated by the sketching approach,
executed with different parameters. In all experiments
we set k = 20 to generate a reliable k-mer spectrum, i.e.
the one consisting of k-mers that have low probability
of occurring randomly in a given read. To obtain such
spectrum it is sufficient to set k such that d � 4k,
where d = 1,600 is the approximate length of 16S rDNA
sequences from which our data has been derived. Finally,
we set Cmin = t in all cases, and Cmax = 730, which is
approximately 10% of the RDPX-I size (for larger data
sets we expect Cmax to be a much smaller fraction).

TABLE 1: Sensitivity of the sketching approach for different configura-
tions of M and threshold t. For each choice of M only 3, 5 and 9
iterations have been executed.

t = 0.50 t = 0.90
M 3 5 9 3 5 9
100 0.994 1 1 0.985 0.998 1
62 0.972 0.997 1 0.94 0.992 1
50 0.989 0.997 1 0.979 0.99 1
40 0.988 0.999 1 0.991 1 1
33 0.991 0.999 1 0.976 0.997 1
25 0.988 0.999 1 0.965 0.993 1
20 0.998 1 1 0.993 1 1
14 0.979 0.996 1 0.966 0.996 1
10 0.992 1 1 0.977 1 1
9 0.997 1 1 0.997 1 1

As we can see in Table 1 sketching very accurately
detects similar sequences irrespective of selected thresh-
old t, and it requires only 9 iterations to achieve 100%
sensitivity. This clearly demonstrates that sketching can
be a reliable replacement for all vs. all comparisons.
Decreasing M , which is equivalent to increasing the
number of sketches sampled from each sequence in a
single iteration, seems to have only minor effect on
sensitivity. However, one can expect that the effect will
be more pronounced for lower threshold values, where
similarity between sequences is harder to detect.

To assess sketching scalability we measured fraction of
all vs. all comparisons required for a given threshold to
validate predicted edges, and then fraction of predicted
edges that are rejected during this step. We executed 7
iterations for different choices of M and t, each time
obtaining sensitivity above 99%. Table 2 summarizes
obtained results.

TABLE 2: Fraction of all vs. all comparisons during validation step and
fraction of rejected edges for different choices of M and t.

t M = 100 M = 33 M = 9
0.30 0.11769/0.59192 0.12385/0.54955 0.08971/0.35745
0.45 0.07908/0.82039 0.05519/0.74056 0.03236/0.55742
0.60 0.05007/0.85564 0.02607/0.72271 0.01123/0.35627
0.75 0.03257/0.93084 0.01086/0.79251 0.00591/0.61864
0.90 0.01294/0.97425 0.00474/0.92978 0.00204/0.83646

As expected the sketching approach provides signifi-
cant reduction in the number of comparisons required to
obtain a set of validated edges: even for very low simi-
larity threshold only 11% of all possible comparisons are
required. The gain becomes even more pronounced for
higher threshold values, independent of M . Note that for

larger data sets, e.g. consisting of millions of reads, the
savings will be significantly higher. The fraction of re-
jected edges increases with the threshold value, which is
not surprising taking into account that similar sequences
cannot be easily differentiated without exact comparison.
Finally, the performance of sketching improves with
decreasing values of M . However, we should keep in
mind that by decreasing M we significantly increase the
overall number of sketches generated, which may cause
the cost of generating candidate edges to offset savings
in the validation stage. This of course will depend on the
input data and the choice of function F (e.g. secondary
structure alignment is significantly more computation-
ally demanding than the standard pairwise alignment).

6.4 Clustering Performance

To assess applicability of our quasi-clique based clus-
tering procedure we performed a set of tests using
the RDPX-II data set. First, we performed sketching of
RDPX-II with k = 20, M = 100 and t = 0.75, running
for 7 iterations. Next, we performed clustering of the
resulting graph with γ = 0.65 and T = (0.96, 0.93, 0.90).

As we described earlier RDPX-II consist of 454 reads
derived from known DNA sequences, for which com-
plete taxonomic lineage is given. This information can be
used to verify how well given clustering correlates with
the “true” clustering induced by the taxonomic data.
However, given predicted and reference clustering the
challenge is to quantify their similarity. Although several
methods have been proposed to compare partitions, e.g.
Rand Index [34], no satisfactory approach exists for
comparing soft clusters in which given element may
belong to multiple bins at the same time. Therefore to
assess the quality of obtained clustering we decided to
use the following approach. Define divergence of cluster c
as d(c) = log(q)

log(|c|) , where q is the number of different
taxonomic units contained in c with respect to the known
taxonomic lineage. For a given cluster the divergence is 0
only if all elements of that cluster belong to the same TU,
and is 1 if no two elements share the same TU. Diver-
gence captures cluster composition, however it cannot be
used alone to assess clustering performance as it neglects
clustering granularity. For instance clustering consisting
of many small clusters will naturally tend to have a small
average divergence. Therefore, we juxtapose divergence
obtained for different similarity thresholds with cluster-
ing statistics. Obtained results are presented in Table 3.

There are several interesting observations in place.
For all similarity threshold values tk the maximum
and average divergence decrease when moving from
lower taxonomic level (genus) to the higher one (family).
This is in line with what we expect as it is easier
to perform clustering at higher taxonomic levels. With
decreasing similarity threshold the cluster size increases
which shows that by introducing new edges larger quasi-
cliques are formed. Finally, smaller difference between
clustering results obtained for threshold values t1 and

11

TABLE 3: Cluster divergence and cluster size for clustering at different
similarity and taxonomic levels.

t1 = 0.96 t2 = 0.93 t3 = 0.90
Divergence: genus level

Maximum 0.903 1 1
Average 0.018 0.020 0.022
Deviation 0.091 0.089 0.091

Divergence: family level
Maximum 0.792 0.827 0.829
Average 0.007 0.007 0.007
Deviation 0.052 0.053 0.052

Cluster size
Minimum 2 2 2
Maximum 2,119 2,210 16,152
Average 15.408 13.270 14.578
Deviation 31.870 33.128 48.221
Median 6 6 7

t2 than t2 and t3 suggests that cutoff t3 is closer to the
value representative for family level.

6.5 Computational Scalability
In the final set of experiments we tested how our map-
reduce implementation scales with respect to the size
of input data. From the RDPX-II data set we extracted
two random subsets, RDPX-II-1M and RDPX-II-2M, con-
sisting of 1 mln and 2 mln reads respectively (see Ta-
ble 4). Next, we performed clustering of all three data
sets for k = 20, M = 100, t = 0.75, γ = 0.65 and
T = (0.96, 0.93, 0.90), executing 7 iterations of sketching
stage. Obtained results are summarized in Table 5.

TABLE 4: Characteristics of the data used to test CLOSET scalability.

RDPX-II-1M RDPX-II-2M RDPX-II
No. reads 1,000,000 2,000,000 4,485,498
Size [MB] 556 1,137 2,551
Read length 420.75/619 420.78/619 420.81/622
(avg/max)

TABLE 5: Run time in seconds for different stages of CLOSET. Total time
includes intermediate data management.

RDPX-II-1M RDPX-II-2M RDPX-II
Sketching 1,706 2,373 4,105
Validation 1,196 2,250 4,091
Clustering (t1 = 0.96) 651 861 840
Clustering (t2 = 0.93) 1,495 2,807 3,985
Clustering (t3 = 0.90) 7,752 16,381 21,566
Total 12,879 24,762 34,692

Analysis of efficiency of map-reduce tasks is in gen-
eral a challenging problem. Performance of any map-
reduce job is strongly affected by how well different
(often very obscure) parameters of the underlying map-
reduce library are tuned, taking into account input data
and the underlying hardware. In fact the process of
map-reduce job configuration is referred to as a “black
art” [38]. To perform experiments we set all typically
configured Hadoop parameters (e.g., the number of re-
ducers spawned, memory allocation to Java daemons,
etc.) so as to avoid out-of-core execution and at the same
time maintain the ratio of mappers to reducers that guar-
antees high CPU utilization. CLOSET implementation

provides an easy to use mechanism to configure each
map-reduce task separately. Finally, we configured all
parameters with respect to the RDPX-II data set, and to
make results comparable between executions, we used
the same configuration to run analysis of the remaining
two data.

Table 5 shows that both sketching and validation stage
scale nearly sub-linear with the size of data, which indi-
cates excellent performance of our sketching approach.
The time required to perform validation is comparable
to the time taken by the sketching phase. This result
however may depend on the input data, the choice
of similarity function F , and configuration of CLOSET
parameters. For a given data set the cost of clustering
increases exponentially for decreasing similarity thresh-
old values. This is not surprising taking into account
exponential increase in the number of quasi-cliques that
have to be processed when more edges are introduced
into clustering. Finally, the total execution time increases
linearly with the size of input data. This result is data
specific – the number of edges with similarity above the
threshold t3 increases only slightly from one data set
to another. For significantly lower thresholds the total
execution time will be dominated by the clustering stage
and will be increasing exponentially with the size of
input data. Note however, that in our application such
low threshold values have no practical justification from
the biological perspective.

7 CONCLUSIONS
Clustering of large-scale environmental samples is con-
sidered a difficult and challenging problem in metage-
nomics. Our work is motivated by the inability of ex-
isting methods and software to scale to large data sets
and lack of formal computational modeling and elegant
algorithmic solutions. This paper represents our effort
to satisfactorily address all the above problems and
issues. We presented a rigorous framework for metage-
nomic clustering based on sketching and iterative quasi-
clique enumeration. Our framework has the following
advantages: it can accommodate arbitrary user-defined
similarity functions, and by performing clustering at
many threshold levels, it can guide researchers in tuning
clustering to better fit different taxonomic ranks. Our
software is implemented on widely available Hadoop
platform with the map-reduce framework. It can easily
handle some of the largest data collections that are cur-
rently being generated for metagenomic studies. While
the presented algorithms are motivated by this specific
problem in metagenomics, we proposed two novel tech-
niques that have much broader applicability. One is the
development of sketching techniques for the realm of
genomics. The other is a parallel algorithm for quasi
clique enumeration.

ACKNOWLEDGMENTS
This research is supported in part by the NSF under
grant no. DMS-1120597.

12

REFERENCES

[1] W. Ansorge. Next-generation DNA sequencing techniques. Nat.
Biotechnol., 25(4):195–203, 2009.

[2] A.K. Benson et al. Individuality in gut microbiota composition is
a complex polygenic trait shaped by multiple environmental and
host genetic factors. Proc. Natl. Acad. Sci. USA, 107(44):18933–
18938, 2010.

[3] D. Bernstein. Hash??? Not quite clear on what this is...
comp.lang.c, 1990.

[4] N. Blow. Metagenomics: Exploring unseen communities. Nature,
453(7195):687–690, 2008.

[5] A. Broder et al. Syntactic clustering of the web. Comput. Networks
ISDN Systems, 29(8–13):1157–1166, 1997.

[6] A. Broder et al. Min-wise independent permutations. J. Comput.
Syst. Sci., 60(3):630 – 659, 2000.

[7] M. Cameron, Y. Bernstein, and H.E. Williams. Clustered se-
quence representation for fast homology search. J. Comput. Biol.,
14(5):594–614, 2007.

[8] S. Chakravorty et al. A detailed analysis of 16S ribosomal
RNA gene segments for the diagnosis of pathogenic bacteria. J.
Microbiol. Methods, 69(2):330–339, 2007.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. In Proc. of Symp. on Opearting Systems Design &
Implementation, volume 6, pages 1–10, 2003.

[10] T.Z. DeSantis et al. Greengenes, a chimera-checked 16S rRNA
gene database and workbench compatible with ARB. Appl.
Environ. Microbiol., 72(7):5069–5072, 2006.

[11] T.Z. DeSantis et al. NAST: A multiple sequence alignment server
for comparative analysis of 16S rRNA genes. Nucleic Acids Res.,
34(Web Server Issue):W394–W399, 2006.

[12] T.Z. DeSantis et al. NAST: A multiple sequence alignment server
for comparative analysis of 16S rRNA genes. Nucleic Acids Res.,
34(Web Server Issue):W394–W399, 2006.

[13] N. Diaz et al. TACOA: Taxonomic classification of environmental
genomic fragments using a kernelized nearest neighbor approach.
BMC Bioinf., 10:56, 2009.

[14] N. Du et al. A parallel algorithm for enumerating all maximal
cliques in complex network. In Proc. of Int. Conf. on Data Mining
Workshops, pages 320–324, 2006.

[15] J. Eid et al. Real-time DNA sequencing from single polymerase
molecules. Science, 323(5910):133–138, 2009.

[16] V. Estivill-Castro. Why so many clustering algorithms: a position
paper. ACM SIGKDD Explorarion Newsletter, 4(1):65–75, 2002.

[17] M. Henzinger. Finding near-duplicate web pages: A large-scale
evaluation of algorithms. In Proc. of ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 284–291, 2006.

[18] D. Huson et al. MEGAN analysis of metagenomic data. Genome
Res., 17(3):377–386, 2007.

[19] A. Kalyanaraman et al. Efficient clustering of large EST data sets
on parallel computers. Nucleic Acids Res., 31(11):2963–2974, 2003.

[20] A. Kalyanaraman et al. Assembling genomes on large-scale
parallel computers. J. Parallel Distrib. Comput., 67(12):1240–1255,
2007.

[21] M. Kim, M. Morrison, and Z. Yu. Evaluation of different partial
16S rRNA gene sequence regions for phylogenetic analysis of
microbiomes. J. Microbiol. Methods, 84(1):81–87, 2011.

[22] W. Li and A. Godzik. Cd-hit: a fast program for clustering
and comparing large sets of protein or nucleotide sequences.
Bioinformatics, 22(13):1658–1659, 2006.

[23] W. Li, J. C Wooley, and A. Godzik. Probing metagenomics
by rapid cluster analysis of very large datasets. PLoS One,
3(10):e3375, 2008.

[24] Z. Liu et al. Accurate taxonomy assignments from 16S rRNA
sequences produced by highly parallel pyrosequencers. Nucleic
Acids Res., 36(18):e120, 2008.

[25] F. Lysholm, B. Andersson, and B. Persson. An efficient simulator
of 454 data using configurable statistical models. BMC Res. Notes,
4(1):449, 2011.

[26] G. Manku, A. Jain, and A. Das Sarma. Detecting near-duplicates
for web crawling. In Proc. of WWW Conf., pages 141–150, 2007.

[27] A. McHardy et al. Accurate phylogenetic classification of variable-
length DNA fragments. Nat. Methods, 4(1):63–72, 2007.

[28] A. McKenna et al. The genome analysis toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome Res., 20(9):1297–1303, 2010.

[29] F. Meyer et al. The metagenomics RAST server – a public
resource for the automatic phylogenetic and functional analysis
of metagenomes. BMC Bioinf., 9(1):386, 2008.

[30] J.M. Perkel. Sanger who? Sequencing the next generation. Science,
10:275–279, 2009.

[31] H. Poinar et al. Metagenomics to paleogenomics: Large-scale
sequencing of mammoth DNA. Science, 311(5759):392–394, 2006.

[32] J. Qin et al. A human gut microbial gene catalogue established
by metagenomic sequencing. Nature, 464(7285):59–65, 2010.

[33] M.O. Rabin. Fingerprinting by random polynomials. Technical
Report TR-15-81, Harvard University, 1981.

[34] W.M. Rand. Objective criteria for the evaluation of clustering
methods. J. Am. Stat. Assoc., 66(336):846–850, 1971.

[35] A. Sarje, J. Zola, and S. Aluru. Accelerating pairwise computations
on Cell processors. IEEE Trans. Parallel Distrib. Syst., 22(1):69–77,
2011.

[36] M. Schatz, B. Langmead, and S. Salzberg. Cloud computing and
the DNA data race. Nat. Biotechnol., 28(7):691–693, 2010.

[37] M.C. Schmidt et al. A scalable, parallel algorithm for maximal
clique enumeration. J. Parallel Distrib. Comput., 69(4):417–428,
2009.

[38] S. Sharma. Advanced Hadoop tuning and optimization, 2009.
[39] C. Simon et al. Phylogenetic diversity and metabolic potential

revealed in a glacier ice metagenome. Appl. Environ. Microbiol.,
75(23):7519–7526, 2009.

[40] P. Turnbaugh et al. A core gut microbiome in obese and lean
twins. Nature, 457(7228):480–484, 2009.

[41] D. Wall et al. Cloud computing for comparative genomics. BMC
Bioinf., 11:259, 2010.

[42] Q. Wang et al. Naive Bayesian classifier for rapid assignment of
rRNA sequences into the new bacterial taxonomy. Appl. Environ.
Microbiol., 73(16):5261–5267, 2007.

[43] J.C. Wooley, A. Godzik, and I. Friedberg. A primer on metage-
nomics. PLoS Comput. Biol., 6(2):e1000667, 2010.

[44] B. Wu et al. A distributed algorithm to enumerate all maximal
cliques in mapreduce. In Proc. of Int. Conf. on Frontier of Computer
Science and Technology, pages 45–51, 2009.

[45] B. Wu and X. Pei. A parallel algorithm for enumerating all the
maximal k-plexes. In Emerging technologies in knowledge discovery
and data mining, volume 4819 of Lecture Notes in Computer Science,
pages 476–483, 2009.

[46] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE
Trans. Neural Networks, 16(3):645–678, 2005.

[47] J. Zola et al. Parallel-TCoffee: A parallel multiple sequence aligner.
In Proc. of ISCA Int. Conf. on Parallel and Distributed Computing
Systems, pages 248–253, 2007.

[48] 454 Life Sciences. http://www.454.com/.
[49] Amazon EC2. http://aws.amazon.com/ec2/.
[50] Earthmicrobiome Project. http://www.earthmicrobiome.org/.
[51] Hadoop. http://hadoop.apache.org/.
[52] Illumina Systems/HiSeq 2000.

http://www.illumina.com/systems/hiseq 2000.ilmn.
[53] Hadoop LibHDFS. http://wiki.apache.org/hadoop/LibHDFS.
[54] MurmurHash. http://sites.google.com/site/murmurhash/.
[55] Ribosomal Database Project. http://rdp.cme.msu.edu/.

